

High Performance Wireless Local Area Networks in the 2.4GHz ISM Band

Chris Heegard, Ph.D.

CTO, Home and Wireless Networking

TI Fellow

Texas Instruments

141 Stony Circle, Suite 130 Santa Rosa California 95401 (707) 521-3060, heegard@ti.com

Outline

- Introduction
 - Improved utilization of the 2.4 GHz ISM band for wireless Ethernet
- The TI/Alantro 22 Mbps solution
 - How it works
 - Why it is good
- Certification Issues
 - Processing Gain
 - Jamming Requirements
- The ACX101 Baseband Processor
- Status of the IEEE 802.11 Task Group "G"
- Summary

Introduction

"Double the Data Rate" Wireless Ethernet

TI Offers 2x, "Double the Data Rate"

- Additive White Gaussian Noise
 - The TI FEC has a "3db" coding gain advantage
- Multipath Distortion
 - The TI "joint equalizer/decoder" can process much more distortion
 - The TI "CCK" solution takes advantage of the receiver

IEEE 802.11b

Why Increase Performance?

- Spectrum is rare and valuable
 - In order to be efficient it demands the most aggressive practical technical solution
 - History: as progress is made, more throughput is achieved
 - Example: Telephone modem technology
 - Fixed 3 kHz channel
 - Initial progress: 300 -> 1,200 -> 2,400 -> 4,800 bits/second
 - Progress was stalled until:
 - Trellis coding, a form of FEC based on convolutional coding, was developed
 - Adaptive signal processing was developed
 - Inspired new wave: 9,600 -> 14,400 -> 28,800 bits/second
- The Alantro/TI technology provides the next wave in wireless Ethernet performance

How to Increase Performance?

	Shannon
0	Shannon (p = 11) Barker 1
*	Barker 2 CCK 11
0	PBCC 11
**	PBCC 22

December 14, 2000 Presented to the FCC

Packet Binary Convolutional Coding

- Combines Binary Convolutional Coding with Codeword Scrambling
- For 11 (and 5.5) Mbps
 - Rate k=1, n=2 encoder
 - 64 state
 - QPSK (BPSK) modulation
 - Dfree $^2/Es = 9/2 = 6.5 dB$
- For 22 Mbps
 - Rate k=2, n=3 encoder
 - 256 state
 - 8PSK modulation
 - Dfree $^2/Es = 704/98 = 8.6 dB$

PBCC Components

BCC Encoder

• PBCC-22:

"Symbol Scrambler"

The TI Realization

Certification Issues

PBCC-22 should be certified under existing rules

2 Principle Aspects to Certification

- Transmission: The nature of the transmitted signal
 - What is the power level?
 - Power Spectrum
- Reception: Robustness at the receiver
 - Depends on the character of the transmitted signal and the sophistication of the receiver
 - Processing Gain
 - Measured with respect to a reference
 - Comparison of Shannon Limits
 - Interference Rejection
 - CW Jamming Margin
 - Narrow Band Gaussian
 - Noise

The Transmitted Signal

The Definition of Spread Spectrum

- "I Don't Know How to Define It, But I Know It When I See It"
 - John Cafarella, Proxim
 - This is a self-serving copout
 - There is a long history to the science of digital communications
 - Morse, Nyquist, Shannon, Weiner, Hamming, Elias,...
- Although one does need to make logical definitions, similar difficulties exist with other important communications parameters
 - Signal-to-Noise ratio
 - Bandwidth
 - Power Spectrum, etc.
- Reasonable Definitions Exist (examples to follow)
- Is the definition important? **NO**
 - A means to an end --> robust communications

Massey's Definition

- "Towards an Information Theory of Spread- Spectrum Systems",
 - Code Division Multiple Access Communications (Eds. S. G. Glisic and P. A. Leppanen), 1995, James L. Massey.
- Defined 2 notions of Bandwidth
 - "Fourier" or "Nyquest" Bandwidth
 - Relates to Spectrum Occupancy
 - "Shannon" Bandwidth
 - Relates to Signal Space Dimension
 - Spreading Ratio ρ
 - A system is "spread spectrum" if ρ is large
- This definition is mathematically precise and intuitive
 - This definition argues that high rate (bits/sec/Hz) systems cannot have significant spreading

Massey's Definition Applied to Wireless Ethernet

Scheme	ρ	ρ	
	Code Level	Waveform Level	
Barker-1	22	40.00	
Barker-2	11	20.00	
CCK-5.5	1	1.82	
CCK-11	1	1.82	
PBCC-5.5	2	3.64	
PBCC-11	1	1.82	
PBCC-22	1	1.82	

Other Notions of Signal "Spreading"

- Uncoded Modulation:
- Break data stream into small pieces
 - map onto independent dimensions

Noise occasionally causes symbol error=> data error

In FEC Systems, Information is Spread

- Coded Modulation:
- Have each bit of data affect many symbols

- Average out the noise with the decoding
- Lesson of Shannon:
 - If you are willing to work (compute) then more throughput is possible

PBCC-11 Pathmemory Requirements

- To perform within 0.5 dB of optimal requires the decoder to observe received symbols in a window that is > 28 QPSK symbols long
 - > 2.5 μ sec
 - @ 11Msps

PBCC-22 Pathmemory Requirements

- To perform within 0.5 dB of optimal requires the decoder to observe received symbols in a window that is > 40 8PSK symbols long
 - $> 3.6 \, \mu sec$
 - @ 11Msps

Processing Gain

- Gain is respect to a reference, an uncoded signal
 - CCK-11, PBCC-11 --> QPSK
 - PBCC-22 --> 8PSK
- Processing gain
 - is defined as the difference between the SNR (Es/ No) required to achieve a threshold BER or PER with the reference scheme and the SNR (Es/ No) required to achieve the same threshold BER or PER when the signal is *processed*.
- Processing
 - of the signal includes error control coding and spreading of the signal.
- Repetition or Rate reduction gain
 - is the energy gain achieved from the reduction of data rate relative to the reference.

Processing Gain (cont.)

- Coding gain
 - is measured on an Eb/ No scale rather than an Es/ No scale. This
 prevents the apparent increase in performance that has been gained as a
 tradeoff between Es/ No and rate.
 - it is the excess gain from a repetition gain
- Bandwidth expansion factor gain
 - With ideal pulse shaping, the TI system which operates at 11 Msps, would occupy 11 MHz of bandwidth. However, the signal is spread to a bandwidth of ~20 MHz. This yields a waveform spreading gain of
 - $\sim 10 \log(20/11) = 2.6 \text{ dB}.$

P. G. Comparison

Scheme	Rate	Mod	Code	C. G.	R. G.	W.G.	P.G
	(Mbps)			(dB)	(dB)	(dB)	(dB)
Barker-1	1	BPSK	Barker	0.00	13.40	2.60	16.00
Barker-2	2	QPSK	Barker	0.00	10.40	2.60	13.00
CCK-11	11	QPSK	CCK	2.00	3.01	2.60	7.61
PBCC-11	11	QPSK	64 state BCC	5.90	3.01	2.60	11.51
PBCC-22	22	8PSK	256 state BCC	8.10	1.76	2.60	12.46

Processing Gain = Coding Gain + Rate/Spreading Gain
 + Waveform/Spreading Gain

Scheme	Eb/No	Coding	
	PER = 10e-2	Gain	
Uncoded QPSK	10.5		
Uncoded 8PSK	13.8		
Barker	10.5	0.0	
CCK-11	8.5	2.0	
PBCC-11	4.6	5.9	
PBCC-22	5.7	8.1	

The CW Jamming Margin Test

- The ACX101 will pass the existing test in all modes
 - Including PBCC-22
- This test is useful for eliminating poorly designed systems
 - Shows some degree of robustness
- Other measures of robustness: (e.g., narrow band Gaussian)
 - The PBCC-22 mode is as robust as the CCK-11
 - Any reasonable test that CCK-11 passes will be passed by PBCC-22

The Jamming Margin Test

- Spreading and Coding Provides
 - Additive White Gaussian Noise Margin
 - Interference Margin
 - Tonal interference
- A CW signal is added to the transmit signal
- An improvement over uncoded modulation is measured

The Problem with the Jamming Margin Test

- A conventional (non-sophisticated) receiver performs a maximum correlation comparison
- This receiver is *maximum likelihood* in AWGN
- The Viterbi algorithm is an efficient method of implementing this receiver
- The AWGN margin and Jamming margin are proportional with this receiver
- However, it is susceptible to other impairments
 - Interference
 - Multipath
 - Variable conditions

The Problem (cont)

- Modern receivers implement adaptive signal processing algorithms which provide robustness
- The AWGN margin and Jamming margin are **not proportional** with this receiver
- Multipath and interference rejection objectives effectively diminish the CW Jammer
- It is possible to *tweak* the receiver to provide addition CW Jamming margin protection
 - Beyond the requirements of the "real world"

The ACX101 Baseband Processor

The ACX 101 Baseband Processor

The IEEE 802.11 Task Group G

The Standards Activity

- Official approval was obtain for the PAR (doc. 00/114r2) on Wednesday, September 20, 2000. On Thursday, September 21, 2000, TGg officially meet for the first time. Minutes for the September 18-20, 2000 Session of the HRb SG are available in document 00/287. Minutes for the September 21-22, 2000 Session of TGg are available in document 00/340.
- The group unanimously moved to issue the Final Call for Proposals. All individuals that would like to submit a proposal to TGg must notify the TGg chairperson, Matthew B. Shoemake, by Monday, October 30, 2000 at 11:59PM EST of their intent to present at the November 2000 Plenary in Tampa, Florida, USA.

Proposal Requirements

General Requirements

- The proposal must be an extension of the IEEE 802.11b standard.
- The proposal shall specify a PHY that implements all mandatory portions of the IEEE 802.11b PHY standard
- Must comply with IEEE 802 patent policy
- Backward compatibility with 802.11b
- All proposals must not render existing 802.11b compliant products non-conformant with the resulting, supplemented IEEE 802.11 2.4GHz standard.
- The proposal shall not repeal any options in the IEEE 802.11b standard.

MAC Interface Requirements

The proposal must be compatible with the IEEE 802.11 MAC standard. Clarification note: Compatibility with the IEEE 802.11 MAC may be achieved by changes to MIB variables.

• Performance Requirements

The maximum PHY data rate of the proposal must be at least 20Mbps

• RF Requirements

- All proposals shall operate in the 2.4GHz band
- Channelization same as 802.11b, i.e. same 5MHz channel spacing and center frequencies

Three Surviving Proposals

November 2000 Meeting

- M. Webster, J. Zyren and S. Halford
 - Intersil
 - Doc # 388-397
 - Multi-tone OFDM, IEEE802.11a, based
- Tim O'Farrell
 - Supergold Communications, Ltd.
 - Doc # 366r1
 - A proprietary single-tone modulation with Reed-Solomon coding
- Chris Heegard, Eric Rossin, Matthew Shoemake, Sean Coffey and Anuj Batra
 - Texas Instruments, Inc
 - Doc # 384
 - Single-tone 8 PSK with PBCC

Packet Error Rate for Proposals

Peak to Average Power

Barker

• CCK

Peak to Average Power (cont)

• PBCC-22

• OFDM-24

Presented to the FCC

Summary

- Alantro/TI has built an extension to the existing IEEE 802.11b standard that is fully backward compatible
- The solution will pass the **existing** FCC rules
 - The spectrum is the same as the existing standard
 - The ACX101, with PBCC-22, is as robust as existing CCK-11 products
 - Will deliver twice the data rate in the same environment
 - The 22 Mbps achieves better performance through
 - Sophisticated signal and FEC design
 - Advanced digital communications signal processing algorithms
- The TI solution is the leading contender for the new IEEE 802.11g wireless Ethernet standard
- The OFDM "PAR" problem should be considered as setting interference rules